Görünenin Üstündeki Görünmez Yazı Matematik-2
Görünenin Üstündeki Görünmez Yazı Matematik-2
Nizamettin YILDIZ |
|
Yüzey alanı ve hacim-kütle münasebeti, Galileonun küçük ve büyük cisimlere ait modelleri matematik açısından karşılaştırmasıyla ciddiyet ve ehemmiyet kazandı. Bundan böyle insanlar üç boyutlu modellerin büyük ve küçük ölçeklerde değişik özellikler gösterdiğini bilimin her dalında görmeye başladılar. Bu gerçeğin, canlılığın yaratılışındaki mucizedeki basit sebep perdelerinden biri olduğu, matematiğin, biyolojideki buluşları inceleme sahasına almasıyla daha da açık bir şekilde ortaya çıktı. Düşünülebilecek ve yapılabilecek en ideal plân ve inşânın yaratılışta mevcut olandan farklı bir şey olamayacağı her geçen gün ortaya konulmakta...
Meselâ; mevcut materyallerle inşa edilmiş gökdelenlerin iki üç katını yapmak nerdeyse imkânsızdır. Bu yapıların boyutları arttığında kütleleri boyutlarının küpü ile orantılı; ama kolonların kesitleri ise, alan olarak karesi ile orantılı artacaktır. Dolayısıyla kütle artış miktarı daha büyük olduğundan belli bir büyüklükten sonra kolonlar binayı taşıyamaz olacaktır. Ve yine bu sebeptenküçük böcekler kendi ağırlıklarının 10-45 katını taşıyabilirler ve yeryüzünde 10.000 metreden daha büyük bir dağ yok-tur. Modellerdeki boyutun değiş-mesiyle Elinize boyutları 1cm olan bir küp alın. Bu küpün hacmi 1cm3 yüzey alanı da 6 cm2 olacaktır. Bu küpün boyutlarını iki katına çıkarın. Bu durumda yeni küpün hacmi 8 cm3 ve alanı ise 24 cm2 olacaktır. Alan büyüklüğü daha büyükmüş gibi görünse de hacmin (dolayısıyla kütlenin) büyüme oranı 8 iken alanın büyüme miktarı 4 olacaktır. Yani hacim, alandan daha hızlı büyürken daha hızlı da küçülecektir ve küçük ölçeklerde alan hacime galebe çalacaktır. İşte bu ince nokta özellikle küçük canlılar için acz kuşağında kudret cilvesi olarak karşımıza çıkmaktadır.Ama sadece küçük değil, bütün canlılar Rabb'imizin yaratılış mucizesine sebep olarak koyduğu bu gerçek sayesinde ayakta durmaktadır. Canlı hücrelerini ele alın; hepsi hayatiyetlerini sürdürmek için sıvı alıp vermek (difüzyon-osmoz)zorundadır; fakat bu olaylarda cari iki unsur (yüzey alanı-hacim) birbirinerağmen işleyecektir. Hücre, büyüklüğü ile orantılı olarak sıvıya ihtiyaç duyarken, Meselâ, (Sızıntı, sayı 294. Temmuz, 2003, sayfa 276-279daki yazımızın 1. bölümünde belirtildiği gibi) beyinde vücut üzerinde tesirli olan noktalar satıhtadır;
Canlı bünyelerdeki dallanan yapının yine aynı yüzey genişletilmesi hikmetiylealâkası izah edilmişti. Bilhassa bilgisayar desteği ile daha da gelişen ve anlaşılır hale gelen matematik algoritmaları, bu yapıya bilim adamlarının daha başka açılardan bakmalarını sağladı. Özellikle Steinerin en kısa yol problemiyle başlayan ve Melzak ile bilgisayar ortamında hayat bulan algoritmalar, dallanmış olarak yaratılan yapıların bu hususî yönünü de ortaya çıkardı. Bütün canlı iletim kanallarının (kan damarları ve sinirler gibi) mevcut noktalar arasındaki en kısa yol -ve dolayısıyla en az malzeme (yapı içi)- için kullanılan algoritmanın
Bu metot telefon ve boru şebekelerinde ve elektronik devrelerde yaygın şekildekullanılır. Daha fazla sayıda nokta arası en kısa yol problemleri ise, gelişmiş programlar vasıtasıyla birkaç dakikada çözülebilmektedir. Meselâ dört veya daha fazla nokta arası en kısa yol bulunmak istendiğinde, yine aynı metotla yapılan çözümler grup noktalar arası ana bağlantı (ana arter) kullanılması gerektiği özelliğini ortaya koydu. (Şekil-4) Aslında dallanmış yapıların herbirinde bu resmi tekrar tekrar görmek mümkündür. Gerek kalb vücut içinde konulduğu yer itibariyle, gerekse ana arterler konumları itibariyle bu algoritmaya uygunlukları ile bu derin ve gizli matematik gerçeğin mükemmel örnekleri olarak arzı endam etmektedir. Peki bu yapının geometrik alternatifleri yok mu, diğer bir deyişle bu yapının matematik ihtimaller içindeki yeri nedir? Matematikçiler topoloji çalış-maları ile bu konuda da algoritmalar geliştirdiler. Meselâ nxnxnxnlik topolojik kafes yapıda iki nokta arası mevcud bütün yolların sayısını olarak buldular. (Şekil-5). Bu sebeple 1x1x1x1lik bir kafes yapıda olabilecek durumların sayısı 24 iken; 2x2x2x2lik bir yapıda bu sayı 2520 olacaktır. (Şekil-6) Pekiyi herhangi bir canlı vücudu için kalbden herhangi bir noktaya meselâ ayak ucuna gidecek muhtemel yolların sayısı nedir? İnsan biyolojisi ve ihtimal
Sayılarla anlamlandıramayacağımız kadar muhtemel yol içinden en uygun olanının ve gelişmiş matematik algoritmaları ile ancak fark edebileceğimiz bu yaratılış, bize karşısında eğilmemiz gereken bir ilâhî ilmi, iradeyi ve kudreti işaret ediyor. Biz de hayatımızı en kısa yolu tercih ederek yönlendiririz. Bir yere giderken, bir iş yaparken, hattâ kulağımızı
|
Bu bölüm 6025 defa görüntülenmiştir.